Abstract

Thermophotovoltaic converters based on multicomponent solid solutions of III–V compounds, specifically, InAsSbP/InAs heterostructures (E g = 0.35–0.60 eV), that are intended for fabricating IR emitters heated to 1000–2000°C are studied. The use of such narrow-gap heterostructures makes it possible to advance the sensitivity of the elements into the long-wave range and utilize the thermal energy of low-temperature sources more efficiently. Fresh physical approaches to fabricating epitaxial quaternary InAs-based InAsSbP solid solutions with a low carrier concentration and heterostructures with sharp interfaces are presented. Quaternary InAsSbP solid solutions and other related heterostructures offer a number of advantages, such as the possibility of growing perfect structures lattice-matched with the substrate, stress-free interfaces, good electrical and photoelectrical properties (low dark currents and a high external quantum efficiency), and the possibility of flexibly controlling the energy gap by varying the composition of the solid solution. It is shown that InAsSbP films grown on an InAs substrate by liquid-phase epitaxy from supercooled liquid solution and liquid-phase electro-epitaxy with replenishment of liquid solution by growing layer components are uniform in composition and have a perfect crystal structure. Thermophotovolatic p-InAsSbP/n-InAs diode-type heterostructures obtained by the above methods are found to have saturation dark currents close to theoretically predicted values and a wide range of spectral sensitivity, which makes them candidates for thermophotovoltaic elements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call