Abstract

We report recent developments at Commissariat a l’Energie Atomique-Laboratoire d’Electronique des Technologies de l’Information Infrared Laboratory on the processing and characterization of p-on-n HgCdTe (MCT) planar infrared focal plane arrays (FPAs) operating in the long-wavelength infrared (LWIR) and very-long-wavelength infrared (VLWIR) spectral bands. The active layers in these FPAs were grown by liquid phase epitaxy (LPE) on a lattice-matched CdZnTe substrate. This technological process results in lower dark current and lower serial resistance than for n-on-p vacancy-doped architecture and thus is better adapted for lower flux detection or higher operating temperature. This architecture was evaluated for space applications in the LWIR and VLWIR spectral bands with cutoff wavelengths from 10 to 17 μm at 78 K. Innovations have been introduced to the technological process to form a heterojunction by use of an LPE growth technique. The initial objective was to reduce the dark current at low temperatures, by reducing the transition temperature from diffusion-limited to depletion-limited dark current. Another advantage is that the wider bandgap obtained in the vicinity of the junction ensures less sensitivity to the defects present at the interface between MCT and passivation layers. Electro-optical characterization of p-on-n photodiodes was performed on quarter video graphics array format FPAs with 25 and 30 μm pixel pitches. The results revealed excellent operabilities in current and responsivity, with low dispersion, and noise limited by current shot noise. Studies performed on the dark current show that dark current densities at 78 K are consistent with the heuristic prediction law “Rule 07”. Below this temperature, dark current varies as a pure diffusion current for a variety of devices from different manufacturers, introducing a temperature range limitation in the description of the “Rule 07” law.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call