Abstract

Introduction. Thermophilic sulfate-reducing bacteria attract attention of scientists as the potential agents of purification of wastewater polluted by sulfur and its compounds, heavy metal ions and organic compounds. These bacteria oxidize different organic substrates using metals with variable valency as electron acceptors and transform them into non-toxic or less toxic forms for living organisms. However, wastewater contains high concentrations of different toxic xenobiotics, particularly, metal ions that have negative influence on living organisms. For this reason, it is important to use resistant strains of microorganisms for the purification of wastewater. The aim of this work was to identify the thermophilic sulfur-reducing bacteria, isolated from “Nadiia” pit spoil heap of Chervonohrad mining region, and to study their properties. Materials and Methods. Thermophilic sulfur-reducing bacteria were isolated from the samples of rock of “Nadiia” pit heap at 50 cm depth. Bacteria were cultivated in TF medium under the anaerobic conditions in anaerostates. Cell biomass was measured turbidimetrically using the photoelectric colorimeter KFK-3 (λ = 340 nm, 3 mm cuvette). Hydrogen sulfide content was measured photoelectrocolorymetrically by the production of methylene blue. Organic acids content was measured by high performance liquid chromatography. Cr(VI), Fe(III), Мn(IV) and NO3– content was measured turbidimetrically. Results. Thermophilic sulfur-reducing bacteria were isolated from the rock of “Nadiia” pit heap of Chervonohrad mining region. They were identified as Moorela thermoacetica based on the morpho-physiological and biochemical properties and on the results of phylogenetic analysis. M. thermoacetica Nadia-3 grow in the synthetic TF medium, have the shape of elongated rods, are gram-positive, endospore-forming. They form light brown colonies. Optimal growth was observed at 50–55 °C, pH 6.5–7. The bacteria utilize glucose, starch, fructose, maltose, lactose, sodium lactate, arabinose, cellulose, maltose, glycerol, fumarate, and ethanol as carbon sources. The highest sulfidogenic activity of M. thermoacetica Nadia-3 was found in media with glycerol, lactose, and glucose. M. thermoacetica Nadia-3 reduce SO42-, S2O32-, Fe(III), NO3–, Cr(VI) compounds besides elemental sulfur. They accumulate biomass at K2Cr2O7 concentrations of 0.1–1 mM. Sulfur reduction is not the main way of energy accumulation. Conclusions. Thermophilic chromium-resistant sulfur-reducing bacteria M. thermoacetica Nadia-3, that produce hydrogen sulfide during the oxidation of different organic compounds, were isolated from the rock of “Nadiia” pit heap. They reduce Fe(III), Cr(VI), NO3–, SO42-, S2O32-, besides elemental sulfur.

Highlights

  • Thermophilic sulfate-reducing bacteria attract attention of scientists as the potential agents of purification of wastewater polluted by sulfur and its compounds, heavy metal ions and organic compounds

  • Thermophilic sulfur-reducing bacteria were isolated from the rock samples collected at the depth 30–50 cm from “Nadiia” pit and Central Enrichment Factory (CEF) heaps

  • Rock samples were collected from the depth of 30–50 cm of “Nadiia” pit and CEF heaps to isolate thermophilic sulfur-reducing bacteria

Read more

Summary

Introduction

Thermophilic sulfate-reducing bacteria attract attention of scientists as the potential agents of purification of wastewater polluted by sulfur and its compounds, heavy metal ions and organic compounds. These bacteria oxidize different organic substrates using metals with variable valency as electron acceptors and transform them into non-toxic or less toxic forms for living organisms. Moorella thermoacetica bacteria (formerly known as Clostridium thermoaceticum) are thermophilic bacteria, obligate anaerobes that belong to phylum Firmicutes, class Clostridia, order Thermoanaerobacterales, family Thermoanaerobacteriaceae, genus Moorella [3, 9, 12] They are capable of obtaining energy by autotrophic (acetogenesis) and heterotrophic (homoacetogenesis) ways of metabolism [8]. Thermophilic acetogens are of significance, since their use would reduce gas cooling requirements, allow for cost-efficient recovery of products with a relatively low boiling point, and decrease the risk of contamination [13]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.