Abstract
RésuméInterest has recently emerged for the manufacture of aeronautical parts by Laser Beam Melting (LBM) additive process. This energy efficient process can for instance be used to build complex geometries, which cannot be made with traditional processes. However, complex phenomena occur during powder melting and track development : vaporisation phenomena influence laser-matter interaction by creating metal vapours that are responsible for the reduction of absorbed energy. The recoil pressure generated by the vaporisation counteracts the surface tension between the melt pool and the inert gas, also inducing liquid instabilities. The study of laser-matter interaction and induced phenomena can help understand the origin of defects such as porosities or cracks. In this approach, a level-set modelling of the LBM process at a mesoscopic scale is proposed to follow melt pool evolution and track development during build. A volume heat source model is used for laser/powder interaction considering the material absorption coefficient. A surface heat source is used to take into account the high laser energy absorption by dense metal alloys. An energy solver is coupled with thermodynamic database and pre-determined solidification path. Shrinkage during consolidation from powder to liquid and compact medium is modelled by a compressible Newtonian constitutive law. An automatic remeshing adaptation is also used to save time and avoid high computational cost. In the future, the computation of multiple beads or the build of a wall in a context of lattice structures will have to be considered.
Highlights
The Laser Beam Melting (LBM) process is attractive for aeronautical applications
A numerical Finite Element (FE) 3D model for LBM process adapted for metals is presented [3]
Energy conservation and heat source modeling The computation of the temperature field is required to propose accurate prediction of the different phenomena that occur during the LBM process
Summary
Interest has recently emerged for the manufacture of aeronautical parts by Laser Beam Melting (LBM) additive process. This energy efficient process can for instance be used to build complex geometries, which cannot be made with traditional processes. Complex phenomena occur during powder melting and track development : vaporisation phenomena influence laser-matter interaction by creating metal vapours that are responsible for the reduction of absorbed energy. The study of lasermatter interaction and induced phenomena can help understand the origin of defects such as porosities or cracks In this approach, a level-set modelling of the LBM process at a mesoscopic scale is proposed to follow melt pool evolution and track development during build. A volume heat source model is used for laser/powder interaction considering the material absorption coefficient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IOP Conference Series: Materials Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.