Abstract

4D printing of functional energy generation/absorption structures by material extrusion technique can capitalize on the exciting applications in intelligent damping devices and patterns to deform spontaneously. This paper investigated the capitalization of this acquired knowledge by studying the shape memory effects of a functional rhombus shape structure. Initially, the shape memory characteristics of energy absorption and dissipation capacity were analyzed using dynamic mechanical testing to develop databases to gather thermophysical data before expressing the material behavior and recovery performances of printed shape memory structures. Then a complete thermomechanical cycle (shape programming and recovery) on 4D printed amorphous and semi-crystalline shape memory polymers exhibited deep insights into shape memory performance. The performance factors (i.e., recovery and fixity ratios) are influenced by variable printing parameters (i.e., layer height, printing temperature, and speed) and stimuli-based testing conditions. Results reveal both materials have significant shape memory effects with a maximum recovery ratio of up to 92.30 ± 0.32% from the programmed configuration. The amorphous polymer was extremely affected by printing temperature, whilst the semi-crystalline was influenced heavily by the interaction of all three parameters. Finally, shape memory effects predicted by a high-order design model and compared with experimental results showed negligible error. The analyses and assessments presented in this paper are adequate to understand the shape memory behavior under process control parameters to establish a data-driven model of a 4D printed semi-crystalline and amorphous polymer reactive to thermal stimuli.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call