Abstract
This paper presents a simulation based on the boundary element method for the optimization of the thermomechanical behavior of three-dimensional microchip-dissipator packaging when the heat generation produced is medium-low. Starting from a basic architecture studied in the literature, different modifications affecting both elastic boundary conditions and the contact interface between the microprocessor and the heatsink are included and studied in order to improve heat dissipation. A nonlinear interface material is included at the interface of both solids. Thus, a thermal contact conductance as a function of the normal contact traction is simulated. Finally, all these improvements in both contact interface and boundary conditions are applied to study the maximum heat generation that this kind of architecture can efficiently dissipate, so that the microchip will not be damaged due to thermal deformations.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have