Abstract
An analytical model, validated by experiments and finite element simulations, is developed to study the thermal imaging of single-walled carbon nanotube (SWNT) devices by scanning Joule expansion microscopy (SJEM). A simple scaling law for thermal expansion at low frequencies, which only depends on two nondimensional geometric parameters, is established. Such a scaling law provides a simple way to determine the surface temperature distribution and power dissipation per unit length in an SWNT from the measured thermal expansion in experiments. The results suggest the spatial resolution of the SJEM measurement is as good as ∼50 nm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.