Abstract
An existing extensive database on the isothermal and thermomechanical fatigue behaviour of high-temperature titanium alloy EVII 834 and dispersoid-strengthened aluminum alloy X8019 in SiC particle-reinforced as well as unreinv conditions was used to evaluate both the adaptability of fracture mechanics approaches to TMF and the resulting predictive capabilities of determining material life by crack propagation consideration. Selection of the correct microstructural concepts was emphasised and these concepts were, then adjusted by using data from independent experiments in order to avoid any sort of fitting. It is shown that the cyclic /-integral (δJeff concept) is suitable to predict the cyclic lifetime for conditions where the total crack propagation rate is approximately identical to pure fatigue crack growth velocity. In the case that crack propagation is strongly affected by creep, the creep-fatigue damage parameter δCF introduced by Riedel can be successfully applied. If environmental effects are very pronounced, the accelerating influence of corrosion on fatigue crack propagation can no longer implicitly be taken into account in the fatigue crack growth law. Instead, a linear combination of the crack growth rate contributions from plain fatigue (determined in vacuum) and from environmental attack is assumed and found to yield a satisfactory prediction, if the relevant corrosion process is taken into account.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.