Abstract

Thermomechanical fatigue (TMF) is a primary cause of turbine blade failure. TMF tests of a nickel-based directional solidification superalloy, which is a typically used material for turbine blades, are performed out in the surface temperature range of 400 °C–700 °C, two phases (in-phase and out-of-phase, i.e. IP and OP, respectively), three stresses, and two stress ratios. The test results idicate that the TMF life of the OP exceeds that of the IP. An increase in the stress ratio prolongs the TMF life. Scanning electron microscopy and transmission electron microscopy are performed to investigate the failure mechanism. The TMF failure behavior is complex and mainly includes fatigue, creep, and oxidation damage, with a quasi-cleavage fracture mode. Based on the theory of crystal plasticity as well as comprehensively considering the failure mechanism and focusing on the statistical characteristics of the thermal–stress interaction, a TMF constitutive model is established, which explains the differences in TMF behavior between the IP and OP conditions from a theoretical perspective.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.