Abstract

<p>We study the thermal erosion and mechanical fragmentation of dyke host rocks using a thermodynamical and fluid-mechanical approach. It is inferred that the latent heat of magma mainly causes the thermal damage of dyke host rocks and encourages thermal erosion. The application of fluid-dynamical shear stress on the dyke walls induced by turbulence magma flow results in mechanical fragmentation., We calculated the Reynolds number to confirm these findings to decipher the nature of magma flow through the dykes. The estimated Reynolds number for 30 dykes is in excess of 2000 suggesting that magma ascends turbulently through the dykes. The turbulence of magma flow provides additional energy to derive thermal erosion and mechanical fragmentation.  In order to better understand the thermo-mechanical effect of dyke host rocks, we used the mass conservation principle. Equations for mass conservations are derived to better explain the complex interactions between magma and host rock. Heat transfer, magma flow rate, magma flow velocity, and host rock melting are calculated. The presence of xenoliths in the dykes is primary evidence that the dykes have been mechanically fragmented. We present an integrodifferential equation to understand the kinematic of mechanical fragmentation and size of xenoliths varies due to secondary Collison within a dyke. Presented results are useful to understand the nature of magma, dyke host rock melting, and magma evolution.</p><p><strong>Key words</strong>: Thermal erosion, mechanical fragmentation, turbulent magma flow, dykes</p>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call