Abstract

A generalized multi-domain Rayleigh-Ritz (MDRR) approach developed by Ling and Dasgupta (1995), is extended in this paper, to obtain the stress field in flip chip solder interconnects, under cyclic thermal loading. Elastic, Plastic and time-dependent visco-plastic analysis is demonstrated on flip chip solder interconnects. The method has been applied to other surface-mount interconnects in the past such as J-lead (Ling and Dasgupta, 1996a) and ball-grid joints (Ling and Dasgupta, 1997). The analysis results for the J-lead and ball grid joints have confirmed that the MDRR technique is capable of providing stress-strain hysteresis with adequate accuracy, at a fraction of the modeling effort required for finite element model generation and analyses. Nonlinear viscoplastic stress analysis results for flip chip interconnects without underfill are presented in this paper. The fatigue endurance of the solder joints is assessed by combining results from this stress analysis model with an energy-partitioning damage model (Dasgupta et al., 1992). The life predicted by the analytical damage model is compared with experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call