Abstract
Thermoluminescence (TL) of borates is remarkable in the field of radiation dosimetry because they can detect both neutron and gamma radiations. Usually, the TL efficiency of pure borates is low and hence dopants have to be added to increase their TL output. Their sensitivity and thermal stability vary widely and depend strongly on the preparation method. In this study polycrystalline powders of different rare earth doped thermoluminescent phosphors of Lithium Strontium borate (LSB) were synthesized by solid state sintering technique. Among the different rare earth dopants, the phosphor doped with cerium was found to have a simple glow curve structure with a dosimetric peak at around 265°C for a heating rate of 5°C/s. In order to study the effect of dopant on the TL characteristics, LSB phosphor with different concentrations of Ce dopant was synthesized and the TL intensity was found to be maximum for a dopant concentration of 0.7 mol%. All other important dosimetric characteristics like dose response and fading were carried out for the LSB:Ce (0.7 mol%) phosphor. Kinetic parameters like trap depth and frequency factor were determined using Peak shape method from Chen’s equation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have