Abstract
AbstractWe developed a numerical thermodynamics laboratory called “Thermolab” to study the effects of the thermodynamic behavior of nonideal solution models on reactive transport processes in open systems. The equations of the state of internally consistent thermodynamic data sets are implemented in MATLAB functions and form the basis for calculating Gibbs energy. A linear algebraic approach is used in Thermolab to compute Gibbs energy of mixing for multicomponent phases to study the impact of the nonideality of solution models on transport processes. The Gibbs energies are benchmarked with experimental data, phase diagrams, and other thermodynamic software. Constrained Gibbs minimization is exemplified with MATLAB codes and iterative refinement of composition of mixtures may be used to increase precision and accuracy. All needed transport variables such as densities, phase compositions, and chemical potentials are obtained from Gibbs energy of the stable phases after the minimization in Thermolab. We demonstrate the use of precomputed local equilibrium data obtained with Thermolab in reactive transport models. In reactive fluid flow the shape and the velocity of the reaction front vary depending on the nonlinearity of the partitioning of a component in fluid and solid. We argue that nonideality of solution models has to be taken into account and further explored in reactive transport models. Thermolab Gibbs energies can be used in Cahn‐Hilliard models for nonlinear diffusion and phase growth. This presents a transient process toward equilibrium and avoids computational problems arising during precomputing of equilibrium data.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have