Abstract
A numerical procedure is developed for the analysis of thermohydrodynamic behaviour of the hydrodynamic (HD) flow in the groove of a journal bearing. The Navier-Stokes and energy equations are written in terms of the primitive variables u, v, p, and T and solved simultaneously using the incremental load method and the finite element formulation. The numerical model is applied to the analysis of the velocities, the pressure, and the temperature patterns that characterize the lubricant flow in the HD groove. The effects of the runner velocity and the feeding pressure are investigated.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have