Abstract

The present study focuses on the optimum design effectiveness in heat removal for small surfaces. Pin-fin made of solid and porous cylindrical shape forming chevron is investigated numerically using the finite element method. The design consists of 3-chevron and 5-chevron configurations connected to a heated block with fluid circulating between the chevron and above them. Variable Reynolds number and pin-fins height ranging from 2 mm to 8 mm are investigated. The full Navier–Stokes equation combined with the energy equation was solved in the presence of the solid pin-fins. The Darcy–Brinkman model with the effective energy equation is used in the presence of the porous pin-fins. The system is solved for Reynolds numbers ranging from 50 to 1000, thus remaining in the laminar regime. Results revealed that the best performance evaluation criterion is higher for the 8 mm porous pin-fins regardless of their permeability. If one ignores the pressure drop and friction contribution, a solid pin-fin having a height of 4 mm showed the best heat absorption mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.