Abstract

Increasing the power and reliability of microelectronic components requires heat sinks with greater heat transport performance. This study investigates the hydraulic and heat transport performance of a silicon heat sink under a constant heat flux of 100 W/cm2 with liquid coolant running through parallel microchannels. The coupled heat transfer through the silicon walls and the coolant, modelled as a single-phase fluid, is examined over the Reynolds number range 100≤Re≤350 for micro-channels of circular cross-section, with a straight tape, and with a twisted tape that induces swirl in the flow. Al2O3 nanofluid at nanoparticle volume fractions ϕ = 0, 1, 2 and 3% is used as the coolant. The microchannel heat sink with swirl flow and with the highest nanoparticle volume fraction concentration provides the lowest thermal resistance and contact temperature. Whilst it has a higher flow resistance than the micro-channel with no tape cooled by pure water, it has a positive trade-off between the gains in cooling performance and in flow resistance. This makes these configurations attractive for designing more performing heat sinks for temperature limited or temperature sensitive micro-electronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.