Abstract

Capillary pumped loop (CPL) and loop heat pipe (LHP) are passive heat transport devices that are gaining importance as a part of the thermal control system of modern high power spacecraft. A mathematical model to simulate the thermohydraulic performance of CPLs and LHPs is required for the design of such a thermal control system. In this study a unified mathematical model to estimate thermal and hydraulic performance of a CPL and an LHP with a two-phase or a hard-filled reservoir is presented. The steady-state model is based on conservation of energy and mass in the system. Heat exchange between the loop and the surroundings and pressure drops in the loop are calculated. This study presents the results of numerical studies on a CPL and an LHP. The constant conductance regime in a CPL or an LHP occurs when the reservoir is hard-filled. It also occurs in an LHP if the condenser is fully used. The heat leak across the wick becomes significant in a hard-filled LHP because the core is no longer saturated and hence the mass flow rate must be calculated using an energy balance on the outer surface of the wick.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call