Abstract
In this study we examine two-component shear flows that are stable with respect to Kelvin–Helmholtz and to double-diffusive instabilities individually. Our focus is on diffusively stratified ocean regions, where relatively warm and salty water masses are located below cool fresh ones. It is shown that such systems may be destabilized by the interplay between shear and thermohaline effects, caused by unequal molecular diffusivities of density components. Linear stability analysis suggests that parallel two-component flows can be unstable for Richardson numbers exceeding the critical value for non-dissipative systems$(Ri=1/4)$by up to four orders of magnitude. Direct numerical simulations indicate that these instabilities transform the initially linear density stratification into a series of well-defined horizontal layers. It is hypothesized that the combined thermohaline–shear instabilities could be ultimately responsible for the widespread occurrence of thermohaline staircases in diffusively stable regions of the World Ocean.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have