Abstract

The aim of the study is characterization of high-temperature oxidation behavior of new Co-based superalloys by thermogravimetry (TG). The following alloys have been taken into account: Co–9Al–9W, Co–20–Ni–7Al–7W, Co–10Al–5Mo–2Nb and Co–20Ni–10Al–5Mo–2Nb (at.%). The thermogravimetric analysis was carried out in the temperature range 40–1200 °C of heating rate 5° min−1. The investigation was performed using the thermal analyzer NETZSCH STA 449 F3 Jupiter. TG–DTG plots showed oxidation behavior up to 1200 °C and indicated the temperatures of further isothermal oxidation examinations. The oxidation behavior of basic Co–9Al–9W (at.%) alloy was compared to W-free Co–10Al–5Mo–2Nb and Co–20Ni–10Al–5Mo–2Nb (at.%) alloys. The obtained data showed different oxidation behavior dependably on the type of alloying elements. Moreover, the effect of Ni addition on oxidation performance was determined. The scales grown on Co-base superalloys after thermogravimetry were evaluated by means of scanning electron microscopy and energy dispersive spectroscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call