Abstract

Thermal behavior of various synthesized transition metal surfactant complexes of the type [M(CH3COO)4]2−[C12H25NH3 +]2 where M: Cu(II), Ni(II), Co(II) has been investigated using Thermogravimetric Analysis (TGA). It was found that pyrolytic decomposition occurs with melting in metal complexes, and that metal oxides remain as final products. The activation energy order obtained, E Cu > E Ni > E Co, could be explained on the basis of size of transition metal ion and metal ligand bond strength. In the course of our investigation on the decomposition of complexes, we carried out a comparative study of different measurement and calculation procedures for the thermal decomposition. A critical examination was made of the kinetic parameters of non-isothermal thermoanalytic rate measurement by means of several methods such as Coats–Redfern (CR), Horowitz–Metzger (HM), van Krevelen (vK), Madhusudanan–Krishnan–Ninan (MKN), and Wanjun–Yuwen–Hen–Cunxin (WYHC). The most appropriate method among these was determined for each decomposition step according to the least-squares linear regression. It was found that the results obtained using CR method differ considerably from HM method, as the former method involves a lot of approximations and is not much reliable. The application of thermoanalytic techniques to the investigation of rate processes has also been discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call