Abstract

β-Thalassemia is a hemoglobin genetic disorder characterized by the absence or reduced β-globin chain synthesis, one of the constituents of the adult hemoglobin tetramer. In this study the possibility of using thermogravimetric analysis (TGA) followed by chemometrics as a new approach for β-thalassemia detection is proposed. Blood samples from patients with β-thalassemia were analyzed by the TG7 thermobalance and the resulting curves were compared to those typical of healthy individuals. Principal Component Analysis (PCA) was used to evaluate the correlation between the hematological parameters and the thermogravimetric results. The thermogravimetric profiles of blood samples from β-thalassemia patients were clearly distinct from those of healthy individuals as result of the different quantities of water content and corpuscular fraction. The hematological overview showed significant decreases in the values of red blood cell indices and an increase in red cell distribution width value in thalassemia subjects when compared with those of healthy subjects. The implementation of a predictive model based on Partial Least Square Discriminant Analysis (PLS-DA) for β-thalassemia diagnosis, was performed and validated. This model permitted the discrimination of anemic patients and healthy individuals and was able to detect thalassemia in clinically heterogeneous patients as in the presence of δβ-thalassemia and β-thalassemia combined with Hb Lepore. TGA and Chemometrics are capable of predicting ß-thalassemia syndromes using only a few microliters of blood without any pretreatment and with an hour of analysis time. A fast, rapid and cost-effective diagnostic tool for the β-thalassemia screening is proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.