Abstract

The aim of this study was to evaluate the usefulness of the Rapid Visco Analyser (RVA) instrument combined with pattern recognition methods as tools to differentiate commercial barley samples from two South Australian localities and three harvests. Principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA) and stepwise discriminant analysis were applied to classify samples based on the RVA profiles using full cross validation (leave-one-out) as the validation method. The PLS-DA models correctly classify 96.3 and 97.8 % of the barley samples according to harvest and locality, using the profiles generated by the RVA instrument. Analysis and interpretation of the eigenvectors and loadings from the PCA or PLS-DA models developed verified that the RVA profiles contain relevant information related to starch pasting properties that allows sample classification. These results suggest that RVA coupled with PLS-DA holds necessary information for a successful classification of barley samples sourced from different localities and harvests.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.