Abstract

Nonisothermal thermogravimetric analysis (TGA) was applied to evaluate rice straw, sawdust, wheat stalk, maize straw, and bamboo to explore their potential for reduction of manganese dioxide ore. Results from the biomass pyrolysis experiments showed that wood-based biomass materials, such as sawdust and bamboo, could produce more reductive agents, while herb-based biomass materials, such as rice straw, wheat stalk, and maize straw, had lower reaction temperatures. The peak temperatures for biomass reduction tests were 20 K to 50 K (20 °C to 50 °C) higher compared with the pyrolysis tests, and a clear shoulder at around 523 K (250 °C) could be observed. The effects of heating rate, biomass/manganese dioxide ore ratio, and different components of biomass were also investigated. An independent parallel first-order reaction kinetic model was used to calculate the values of activation energy and frequency factor for biomass pyrolysis and reduction of manganese dioxide ore. For better understanding the reduction process, kinetic parameters of independent behavior of manganese dioxide ore were also calculated by simple mathematical treatment. Finally, the isokinetic temperature Ti and the rate constant k0 for reduction of manganese oxide ore by reductive volatiles of biomass were derived according to the Arrhenius equation, which were determined to be 603 K (330 °C) and 108.99 min−1, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call