Abstract

The mechanism on biomass reduction of low-grade manganese dioxide ore was studied by investigating influence factors on manganese recovery degree, such as the reaction temperature, time, biomass/ore ratio, compositions of biomass, nitrogen flow rate, and particle size of raw materials, and it was further identified through analysis of gas composition in the outlet gas, X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) for the reduced sample. The results show that the reduction process involved mainly two steps: (1) The biomass was first pyrolyzed to release reductive volatiles and (2) manganese oxide ore was reacted with the reductive volatiles. By an analysis of gas composition in the outlet gas, it was also found that the ratio of biomass/ore had an important effect on the reduction mechanism. With a low biomass/ore ratio of 0.5:10, the reducing reaction of the reductive volatiles with manganese dioxide ore proceeded mainly in two stages: (1) The condensable volatiles (tar) released from biomass pyrolysis reacted with manganese oxide ore to produce reductive noncondensable gases such as hydrogen, carbon monoxide, and some light hydrocarbons; and (2) the small molecule gases further participated in the reduction. XRD pattern analysis on the reduced manganese dioxide ore revealed that the process of biomass reduction of manganese ore underwent in phases (MnO2 → Mn3O4 → MnO). The kinetics study showed the reduction process was controlled by a gas–solid reaction between biomass volatiles and manganese oxide ore with activation energy E of 53.64 kJ mol−1 and frequency factor A of 5.45 × 103 minutes−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.