Abstract

Tin sulfide (SnS), a low-cost compound from the IV-VI semiconductors, has attracted particular attention due to its great potential for large-scale thermoelectric applications. However, pristine SnS shows a low carrier concentration, which leads to a low thermoelectric performance. In this work, sodium is utilized to substitute Sn to increase the hole concentration and consequently improve the thermoelectric power factor. The resultant Hall carrier concentration up to ∼1019 cm-3 is the highest concentration reported so far for this compound. This further leads to the highest thermoelectric figure of merit, zT of 0.65, reported so far in polycrystalline SnS. The temperature-dependent Hall mobility shows a transition of carrier-scattering source from a grain boundary potential below 400 K to acoustic phonons at higher temperatures. The electronic transport properties can be well understood by a single parabolic band (SPB) model, enabling a quantitative guidance for maximizing the thermoelectric power factor. Using the experimental lattice thermal conductivity, a maximal zT of 0.8 at 850 K is expected when the carrier concentration is further increased to ∼1 × 1020 cm-3, according to the SPB model. This work not only demonstrates SnS as a promising low-cost thermoelectric material but also details the material parameters that fundamentally determine the thermoelectric properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call