Abstract

Unlike semiconducting TiCoSb, ZrCoSb and HfCoSb half-Heusler phases are semimetallic below room temperature and exhibit small Seebeck coefficients of ∼−10 μV/K at 300 K. However, upon substituting (doping) the Co and Sb sites with Pt and Sn, respectively, much larger thermopowers (S) are obtained. For ZrCoSb, S reaches −110 and +130 μV/K while resistivity ρ decreases from ∼5×104 μΩ cm in the undoped phase to 1–2×103 μΩ cm in the substituted phases at 300 K. The lowest thermal conductivity obtained in the substituted alloys is ∼3.0 W/m K at 300 K, which is among the lowest reported for this class of structural phases. There are indications that the thermoelectric properties have not been optimized in these multinary alloys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call