Abstract

The multiple anion superlattice Bi4O4SeCl2 has been reported to exhibit extremely low thermal conductivity along the stacking c-axis, making it a promising material for thermoelectric applications. In this study, we investigate the thermoelectric properties of Bi4O4SeX2 (X = Cl, Br) polycrystalline ceramics with different electron concentrations by adjusting the stoichiometry. Despite optimizing the electric transport, the thermal conductivity remained ultra-low and approached the Ioffe-Regel limit at high temperatures. Notably, our findings demonstrate that non-stoichiometric tuning is a promising approach for enhancing the thermoelectric performance of Bi4O4SeX2 by refining its electric transport, resulting in a figure of merit of up to 0.16 at 770 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.