Abstract

Tin selenide (SnSe), which has high thermoelectric (TE) performance due to its low thermal conductivity, is considered as a promising TE material. It is good that TE properties were reported in single crystal form because polycrystalline SnSe exhibits low electrical conductivity compared to that of single crystal SnSe. To improve the electrical conductivity of polycrystalline SnSe, the effects of the pressure applied during spark plasma sintering (SPS) on the electrical charge transport and the TE properties of the polycrystalline SnSe were investigated. Degree of texture was enhanced with increasing sintering pressure from 30 to 120 MPa during SPS, which lead to the increase in carrier mobility, which resulted in the increase in electrical conductivity. Increase in pressure led to a significant increase in thermal conductivity due to an increase in the lattice thermal conductivity, which can be attributed to the decrease in phonon scattering at the grain boundary. A ZT of $${\sim }0.7$$ was obtained at 823 K from the polycrystalline SnSe sintered with a pressure of 60 MPa, which can result from large increase in electrical conductivity with very small increase in the thermal conductivity. This study shows that the TE properties of the polycrystalline SnSe can be enhanced by controlling the degree of texture which can be accomplished by changing the pressure applied during SPS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.