Abstract

The structural, electronic, and transport properties of CaAgAs, a recently predicted topological nodal line semimetal, are investigated using density‐functional theory with spin–orbit coupling (SOC) and Boltzmann transport theory. The material exhibits a topological phase transition from a nodal line semimetal to a topological insulator (TI) phase as a result of the SOC effect. The Voigt–Reuss–Hill approximation is used to compute various mechanical properties. The calculated Seebeck coefficient ≈153.19 μV K−1, power factor ≈5.9 × 1011 W m−1 K−2 s−1, and lattice thermal conductivity ≈6.20 W m−1 K−1 suggest that CaAgAs have superior thermoelectric performance compared to other well‐known predicted thermoelectric materials. The calculated value of figure of merit for without (NSOC) is 0.34, which increases to 0.43 with SOC at 500 K. In these findings, the potential of CaAgAs is reflected as a thermoelectric material, attributed to the topological phase transition induced by SOC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call