Abstract

The thermoelectric properties of Au49Cu26.9Ag5.5Pd2.3Si16.3 glassy alloy have been studied using electrical resistivity, thermal conductivity and Seebeck coefficient measurements over temperature range 2–390 K. At heating, resistivity ρ decreases in a power-law manner from residual value ρ0 ∼ 150 μΩ cm. The temperature coefficient of resistivity, α = ρ−1(∂ρ/∂T), is rather small and varies non-monotonously. Thermal conductivity κ rises linearly at low temperatures; it exhibits a plateau-like feature and sharply increases at elevated temperatures. Seebeck coefficient S increases with temperature and exhibits a characteristic “knee” feature. At elevated temperatures, S increases linearly with temperature but with a different slope. It total, thermoelectric properties of Au-based glassy alloy demonstrate behavior of a highly disordered system in a most pronounced manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.