Abstract

A device for measuring a plurality of material properties is designed to include accurate sensors configured to consecutively obtain thermal conductivity, electrical conductivity, and Seebeck coefficient of a single sample while maintaining a vacuum or inert gas environment. Four major design factors are identified as sample-heat spreader mismatch, radiation losses, parasitic losses, and sample surface temperature variance. The design is analyzed using finite element methods for high temperature ranges up to 1000 °C as well as ultra-high temperatures up to 2500 °C. A temperature uncertainty of 0.46% was estimated for a sample with cold and hot sides at 905.1 and 908.5 °C, respectively. The uncertainty at 1000 °C was calculated to be 0.7% for a ΔT of 5 °C between the hot and cold sides. The thermal conductivity uncertainty was calculated to be −8.6% at ∼900 °C for a case with radiative gains, and +8.2% at ∼1000 °C for a case with radiative losses, indicating the sensitivity of the measurement to the temperature of the thermal guard in relation to the heat spreader and sample temperature. Lower limits of −17 and −13% error in thermal conductivity measurements were estimated at the ultra-high temperature of ∼2500 °C for a single-stage and double-stage radiation shield, respectively. It is noted that this design is not limited to electro-thermal characterization and will enable measurement of ionic conductivity and surface temperatures of energy materials under realistic operating conditions in extreme temperature environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call