Abstract

The effect of isovalent sulfur substitution on the thermoelectric properties of n-type Bi2Te2.7Se0.3 alloy has been studied systematically. At low sulfur concentrations, where the samples are single phase, changes in defect chemistry and density of states impacted significantly electrical resistivity and thermopower. Isovalent sulfur substitution enhanced thermopower and reduced thermal conductivity for both single and multiphase samples. This reduction in thermal conductivity was particularly noticeable in samples containing Bi2S3-based secondary phase, reaching a low thermal conductivity of ∼0.3 W m−1 K−1 at 525 K. A maximum figure of merit, zT, of 0.55 was achieved for the sample with the highest sulfur content, demonstrating the potential of this approach to optimise the thermoelectric performance of Bi2Te3-based materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.