Abstract

Epidote is a typical hydrous mineral in subduction zones. Here, we report a synchrotron-based single-crystal X-ray diffraction (XRD) study of natural epidote [Ca1.97Al2.15Fe0.84(SiO4)(Si2O7)O(OH)] under simultaneously high pressure-temperature (high P-T) conditions to ~17.7 ​GPa and 700 ​K. No phase transition occurs over this P-T range. Using the third-order Birch-Murnaghan equation of state (EoS), we fitted the pressure-volume-temperature (P-V-T) data and obtained the zero-pressure bulk modulus K0 ​= ​138(2) GPa, its pressure derivative K0' ​= ​3.0(3), the temperature derivative of the bulk modulus ((∂K/∂T)P ​= ​−0.004(1) GPa/K), and the thermal expansion coefficient at 300 ​K (α0 ​= ​3.8(5) ​× ​10−5 ​K−1), as the zero-pressure unit-cell volume V0 was fixed at 465.2(2) Å3 (obtained by a single-crystal XRD experiment at ambient conditions). This study reveals that the bulk moduli of epidote show nonlinear compositional dependence. By discussing the stabilization of epidote and comparing its density with those of other hydrous minerals, we find that epidote, as a significant water transporter in subduction zones, may maintain a metastable state to ~14 ​GPa along the coldest subducting slab geotherm and promote slab subduction into the upper mantle while favoring slab stagnation above the 410 ​km discontinuity. Furthermore, the water released from epidote near 410 ​km may potentially affect the properties of the 410 ​km seismic discontinuity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.