Abstract

The pressure-volume-temperature (P-V-T) equation of state (EoS) of synthetic uvarovite has been measured at high temperatures up to 900 K and high pressures up to 16.20 GPa, by using in situ angle-dispersive X-ray diffraction and diamond-anvil cell. Analysis of room-temperature P-V data to a third-order Birch-Murnaghari EoS yielded: V-0 = 1736.9 +/- 0.5 angstrom(3), K-0 = 162 +/- 2 GPa, and K-0(') = 4.5 +/- 0.3. With K-0(') fixed to 4.0, we obtained: V-0 = 1736.5 +/- 0.3 angstrom(3) and K-0 = 164 +/- 1 GPa. Fitting of our P-V-T data by means of the high-temperature third-order Birch-Murnaghan equations of state, given the thermoelastic parameters: V-0= 1736.8 +/- 0.8 angstrom(3), K-0 = 162 +/- 3 GPa, K-0(') = 4.3 +/- 0.4, (partial derivative K/partial derivative T)(P)=-0.021 +/- 0.004 GPa/K, and alpha(0) = (2.72 +/- 0.14)x10(-5) K-1.We compared our elastic parameters to the results from the previous studies for uvarovite. From the comparison of these fittings, we propose to constrain the bulk modulus and its pressure derivative to K-0 = 162 GPa and K-0(') = 4.0-4.5 for uvarovite. Present results were also compared with previous studies for other ugrandite garnets, grossular and andradite, which indicated that the compression mechanism of uvarovite might be similar with grossular and andradite. Furthermore, a systematic relationship, K-0(GPa) = 398.1(7)-0.136(8) V-0 (angstrom(3)) with a correlation coefficient R-2 of 0.9999, has been established based on these isostructural analogs. Combining these results with previous studies for pyralspite garnets-pyrope, almandine, and spessartine-the compositional dependence of the thermoelastic parameters (bulk modulus, thermal expansion, and the temperature derivative of the bulk modulus) were discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.