Abstract
The thermoelastic interactions in an infinite elastic medium with a cylindrical cavity are described in the context of the hyperbolic two-temperature generalized thermoelasticity theory (recently proposed by Youssef and El-Bary, 2018) in which heat conduction in deformable bodies depends upon the difference between the acceleration of conductive temperature and the acceleration of dynamic temperature. The boundary of the cavity is assumed to be stress-free and is subjected to a thermal shock. The problem is formulated to compare between classical generalized thermoelastic model and hyperbolic two-temperature thermoelastic model, on the basis of Lord-Shulman model and hyperbolic two-temperature Lord-Shulman model in a unified way. The Laplace transform method and decoupling of the coupled differential equations are used to solve the problem. Explicit expressions for displacement, stresses and temperature fields are approximated for small-time. Numerical values are displayed graphically for different models and comparison is presented for the illustration of the problem.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have