Abstract
This paper presents two sets of full three-dimensional thermoelastic finite element analyses of superimposed thermo-mechanically loaded FRP composite laminates with embedded interfacial elliptical delaminations, emphasizing the influence of residual thermal stresses and material anisotropy on the delamination fracture behavior characteristics. Modified crack closure integral (MCCI) methods based on the concepts of linear elastic fracture mechanics (LEFM) have been used as a meaningful tool to calculate the individual modes of strain energy release rates from the thermoelastic stress and displacement fields due to a combined thermal and a quasi-static impact loading. Residual stresses developed due to the thermoelastic anisotropy of the laminae are found to strongly influence the delamination onset and propagation characteristics, which have been reflected by the asymmetries in the nature of energy release rate plots and their significant variation along the delamination front.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Composites Part A: Applied Science and Manufacturing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.