Abstract

This paper deals with the study of the effect of drilling induced delamination damage levels and residual thermal stresses (developed during manufacturing process of cooling the laminate form curing temperature to room temperature) on delamination growth behaviour emanating form circular holes in graphite/epoxy laminated FRP composites. Two sets of full three dimensional finite element analyses (one with the residual thermal stresses developed while curing the laminate and the other without residual thermal stresses i.e. with mechanical loading only) have been performed to calculate the displacements and interlaminar stresses along the delaminated interfaces responsible for the delamination onset and propagation. Modified crack closure integral (MCCI) techniques based on the concepts of linear elastic fracture mechanics (LEFM) have been used to calculate the distribution of individual modes of strain energy release rates (SERR) to investigate the interlaminar delamination initiation and propagation characteristics. Asymmetric variations of SERR obtained along the delamination front are caused by the overlapping stress fields due to the coupling effect of thermal and mechanical loadings. It is found that parameters such as ply orientation, drilling induced damage levels and material heterogeneity at the delaminated interface dictate the interlaminar fracture behaviour of laminated FRP composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.