Abstract
Recently, multicomponent glass forming alloys have been found which exhibit extraordinary glass forming ability and cooling rates of less than 100 K/s are sufficient to suppress nucleation of crystalline phases and consequently bulk metallic glass (BMG) is formed. The undercooled melts of BMG systems have high thermal stability in the undercooled region. Therefore, it is interesting to study the thermodynamics of such materials. This article investigates the thermodynamic behavior of a BMG system namely Zr52.5Cu17.9Ni14.6Al10Ti5 by estimating the Gibbs free energy difference ΔG, entropy difference ΔS, enthalpy difference ΔH between the undercooled liquid and corresponding equilibrium crystalline solid phase, in the entire temperature range from Tm to TK. Glass forming ability (GFA) of this system has been investigated through various GFA parameters indicating the degree of ease of glass formation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have