Abstract

Based on the available thermodynamic and phase equilibria data, the thermodynamic criteria for oxidation in tin-based lead-free solders under soldering condition was deduced. The dependence of Gibbs free energy on temperature in Pb-free solder oxidation reaction was calculated by applying MATLAB program. The characteristics of oxidation reaction of a varity of solder alloy systems such as Sn-Ag, Sn-Cu, Sn-Sb, Sn-Zn, Sn-Ag-Cu and Sn-Pb eutectic alloys at elevated temperature were analyzed. The results suggested that zinc preferentially oxidized in Sn-Zn solder alloys in the elevated temperature state, while tin preferentially oxidized in the other alloys. The oxidation potential of the Sn-Zn eutectic alloys was higher than that of the pure tin at elevated temperature, whereas the oxidation potentials of Sn-Ag, Sn-Cu, Sn-Sb and Sn-Ag-Cu eutectic alloys were approxiately equal to that of the pure tin. All tin-based Pb-free solder alloys more easily oxidized than the Sn-Pb solder alloys. Oxidizability of these alloys followed in a decreasing order: Sn-Zn>Sn-Sb>Sn-Cu>Sn-Ag>Sn-Ag-Cu>Sn-Pb.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.