Abstract

The enthalpies of micellization of the surfactant series benzyl(2-acylaminoethyl)dimethylammonium chlorides, RABzMe(2)Cl, have been determined by calorimetry and conductivity measurements in the temperature range 15-75 degrees C. Here R stands for an acyl group containing 10-16 carbon atoms and A, Bz, and Me stand for NH(CH(2))(2)N(+), benzyl, and methyl groups, respectively. The enthalpy of micellization, DeltaH(mic) degrees , and the critical micelle concentration, cmc, were calculated directly from calorimetric data. The free energy of micellization, DeltaG(mic) degrees , was obtained from the cmc and the conductance-based degree of counterion dissociation. There is an excellent agreement between DeltaG(mic) degrees calculated from the data of both techniques, but the DeltaH(mic) degrees , the entropy of micellization, values differ. The dependence of the thermodynamic parameters of micellization on the chain length of the hydrophobic group and on the temperature has been analyzed by considering the delicate balance between the factors that contribute to micelle formation, including transfer of the surfactant hydrocarbon chain from the aqueous environment to the micelle, with concomitant release of the solvating water molecules, and the effect of temperature on the structure of water. DeltaG(mic) degrees is more negative, that is, more favorable for RABzMe(2)Cl than for the structurally related alkylbenzyldimethylammonium chlorides. This is attributed to direct and water-mediated H bonding between the amide groups of molecules of the former series.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.