Abstract

In an arbitrary dimension D, we study quadratic corrections to Einstein-Hilbert action described by the Gauss-Bonnet term. We consider charged black hole solutions with anti-de Sitter (AdS) asymptotics, of interest in the context of gravity/gauge theory dualities (AdS/CFT). The electric charge here is due to the addition of an arbitrary nonlinear electrodynamics (NED) Lagrangian. Due to the existence of a vacuum energy for global AdS spacetime in odd dimensions in the framework of AdS/CFT correspondence, we derive a Quantum Statistical Relation directly from the Euclidean action and not from the First Law of thermodynamics. To this end, we employ a background-independent regularization scheme which consists in supplementing the bulk action with counterterms that depend both on the extrinsic and intrinsic curvatures of the boundary (also known as Kounterterms). This procedure results in a consistent inclusion of the vacuum energy in the thermodynamic description for Einstein-Gauss-Bonnet AdS gravity regardless the explicit form of the NED Lagrangian.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.