Abstract

In this letter we consider an N-brane description of an (N+3)-dimensional black hole horizon. First of all, we start by examining in more detail a previous work where a string theory is used in describing the dynamics of the event horizon of a four-dimensional black hole. This is an attempt to understand the black hole thermodynamics by an effective two-dimensional field theory of the event horizon of a black hole. Then we consider a particle model defined on one-dimensional Euclidean line in a three-dimensional black hole as a target spacetime metric. By solving the field equations we find a “worldline instanton” which connects the past event horizon with the future one. This solution gives us the exact value of the Hawking temperature and to leading order the Bekenstein-Hawking formula of black hole entropy. We also show that this formalism is extensible to an arbitrary spacetime dimension. Finally we make a comment of many recent works of one-loop quantum correction to the black hole entropy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call