Abstract

Abstract Sequential (or collisional) engines have been put forward as an alternative candidate for the realisation of reliable engine setups. Despite this, the role of the different stages and the influence of the intermediate reservoirs is not well understood. We introduce the idea of conveniently adjusting/choosing intermediate reservoirs at engine devices as a strategy for optimizing its performance. This is done by considering a minimal model composed of a quantum-dot machine sequentially exposed to various reservoirs at each stage, and for which thermodynamic quantities (including power and efficiency) can be obtained exactly from the framework of stochastic thermodynamics, irrespective the number of stages. Results show that a significant gain can be obtained by increasing the number of stages and conveniently choosing their parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.