Abstract
A quantum Otto engine using two-interacting spins as its working medium is analyzed within framework of stochastic thermodynamics. The time-dependent power fluctuations and average power are explicitly derived for a complete cycle of engine operation. We find that the efficiency and power fluctuations are affected significantly by interparticle interactions, but both of them become interaction-independent under maximal power via optimizing the external control parameter. The behavior of the efficiency at maximum power is further explained by analyzing the optimal protocol of the engine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.