Abstract

A quantum Otto engine using two-interacting spins as its working medium is analyzed within framework of stochastic thermodynamics. The time-dependent power fluctuations and average power are explicitly derived for a complete cycle of engine operation. We find that the efficiency and power fluctuations are affected significantly by interparticle interactions, but both of them become interaction-independent under maximal power via optimizing the external control parameter. The behavior of the efficiency at maximum power is further explained by analyzing the optimal protocol of the engine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call