Abstract
We consider the thermodynamics of a homogeneous superfluid dilute Bose gas in the presence of weak quenched disorder. Following the zero-temperature approach of Huang and Meng, we diagonalize the Hamiltonian of a dilute Bose gas in an external random delta-correlated potential by means of a Bogoliubov transformation. We extend this approach to finite temperature by combining the Popov and the many-body T-matrix approximations. This approach permits us to include the quasi-particle interactions within this temperature range. We derive the disorder-induced shifts of the Bose-Einstein critical temperature and of the temperature for the onset of superfluidity by approaching the transition points from below, i.e., from the superfluid phase. Our results lead to a phase diagram consistent with that of the finite-temperature theory of Lopatin and Vinokur which was based on the replica method, and in which the transition points were approached from above.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have