Abstract

We first discuss the thermodynamics of a Born-Infeld (BI) black hole enclosed in a finite spherical cavity. A canonical ensemble is considered, which means that the temperature and the charge on the wall of the cavity are fixed. After the free energy is obtained by computing the Euclidean action, it shows that the first law of thermodynamics is satisfied at the locally stationary points of the free energy. The phase structure and transition in various regions of the parameter space are then investigated. In the region where the BI electrodynamics has weak nonlinearities, Hawking-Page-like and van der Waals-like phase transitions occur, and a tricritical point appears. In the region where the BI electrodynamics has strong enough nonlinearities, only Hawking-Page-like phase transitions occur. The phase diagram of a BI black hole in a cavity can have dissimilarity from that of a BI black hole using asymptotically anti-de Sitter boundary conditions. The dissimilarity may stem from a lack of an appropriate reference state with the same charge and temperature for the BI-AdS black hole.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.