Abstract

Considering a canonical ensemble, in which the temperature and the charge on a wall of the cavity are fixed, we investigate the thermodynamics of a D-dimensional Gauss-Bonnet black hole in a finite spherical cavity. Moreover, it shows that the first law of thermodynamics is still satisfied. We then discuss the phase structure and transition in both five and six dimensions. Specifically, we show that there always exist two regions in the parameter space. In one region, the system possesses one single phase. However in the other region, there could coexist three phases and a van der Waals-like phase transition occurs. Finally, we find that there is a fairly close resemblance in thermodynamic properties and phase structure of a Gauss-Bonnet-Maxwell black hole, either in a cavity or in anti-de Sitter space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.