Abstract

Using molecular dynamics simulations, we study the Jagla model of a liquid which consists of particles interacting via a spherically symmetric two-scale potential with both repulsive and attractive ramps. This potential displays anomalies similar to those found in liquid water, namely expansion upon cooling and an increase of diffusivity upon compression, as well as a liquid-liquid (LL) phase transition in the region of the phase diagram accessible to simulations. The LL coexistence line, unlike in tetrahedrally coordinated liquids, has a positive slope, because of the Clapeyron relation, corresponding to the fact that the high density phase (HDL) is more ordered than low density phase (LDL). When we cool the system at constant pressure above the critical pressure, the thermodynamic properties rapidly change from those of LDL-like to those of HDL-like upon crossing the Widom line. The temperature dependence of the diffusivity also changes rapidly in the vicinity of the Widom line, namely the slope of the Arrhenius plot sharply increases upon entering the HDL domain. The properties of the glass transition are different in the two phases, suggesting that the less ordered phase is fragile, while the more ordered phase is strong, which is consistent with the behavior of tetrahedrally coordinated liquids such as water silica, silicon, and BeF2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.