Abstract
This work is the sixth in a series of papers on the thermodynamically constrained averaging theory (TCAT) approach for modeling flow and transport phenomena in multiscale porous medium systems. Building upon the general TCAT framework and the mathematical foundation presented in previous works, the limiting case of connected two-fluid-phase flow is considered. A constrained entropy inequality is developed based upon a set of primary restrictions. Formal approximations are introduced to deduce a general simplified entropy inequality (SEI). The SEI is used along with secondary restrictions and closure approximations consistent with the SEI to produce a general functional form of a two-phase-flow model. The general model is in turn simplified to yield a hierarchy of models by neglecting common curves and by neglecting both common curves and interfaces. The simplest case considered corresponds to a traditional two-phase-flow model. The more sophisticated models including interfaces and common curves are more physically realistic than traditional models. All models in the hierarchy are posed in terms of precisely defined variables that allow for a rigorous connection with the microscale. The explicit nature of the restrictions and approximations used in developing this hierarchy of models provides a clear means to both understand the limitations of traditional models and to build upon this work to produce more realistic models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.