Abstract

This paper is the second in a series that details the thermodynamically constrained averaging theory (TCAT) approach for modeling flow and transport phenomena in porous medium systems. In this work, we provide the mathematical foundation upon which the theory is based. Elements of this foundation include definitions of mathematical properties of the systems of concern, previously available theorems needed to formulate models, and several theorems and corollaries, introduced and proven here. These tools are of use in producing complete, closed-form TCAT models for single- and multiple-fluid-phase porous medium systems. Future work in this series will rely and build upon the foundation laid in this work to detail the development of sets of closed models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.